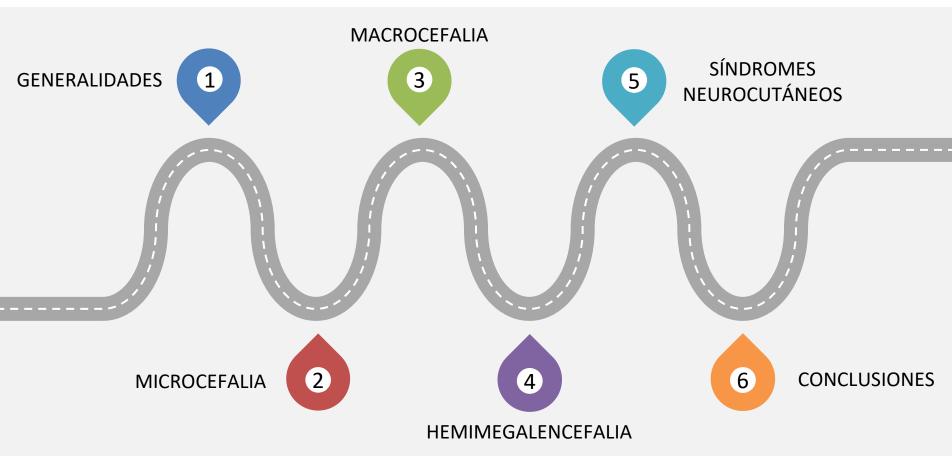


Centro de Referencia Perinatal Oriente

Facultad de Medicina, Universidad de Chile


Trastornos de la Proliferación Neuronal Perspectiva desde la Genética

Dr. Fernando González Gaete
Programa Especialidad Medicina Materno-Fetal
Universidad de Chile

Tutor: Dra. Catherine Díaz

HOJA DE RUTA

GENERALIDADES

DESARROLLO CORTICAL EMBRIOLOGÍA

Proceso formado por tres etapas superpuestas

PROLIFERACIÓN NEURONAL

Inicio: 6 semanas

Fin: 16 semanas

Proliferación y división celular

MIGRACIÓN NEURONAL

Inicio: 6 semanas Fin: 5° mes postnatal

Formación de surcos y giros († superficie cortical sin † del volumen cerebral)

ORGANIZACIÓN NEURONAL

Inicio: 20 semanas

Fin: Vida postnatal

Separación de neuronas de glía Formación axones y dendritas Establecimiento de sinapsis

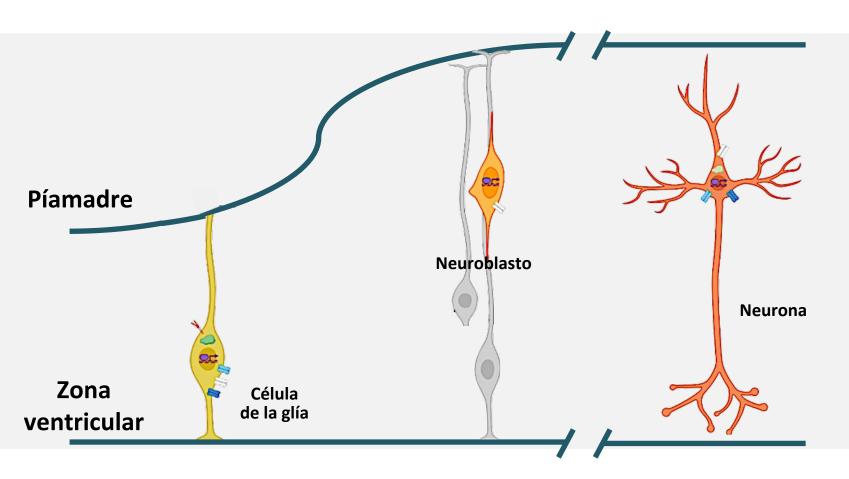
PROLIFERACIÓN NEURONAL EMBRIOLOGÍA

Subepéndimo periventricular (matriz germinal)

- Ubicación: Superficie de ventrículos laterales
- División simétrica: Zona ventricular se torna altamente celular

Células de la glía: Migración a corteza en un patrón radial regular

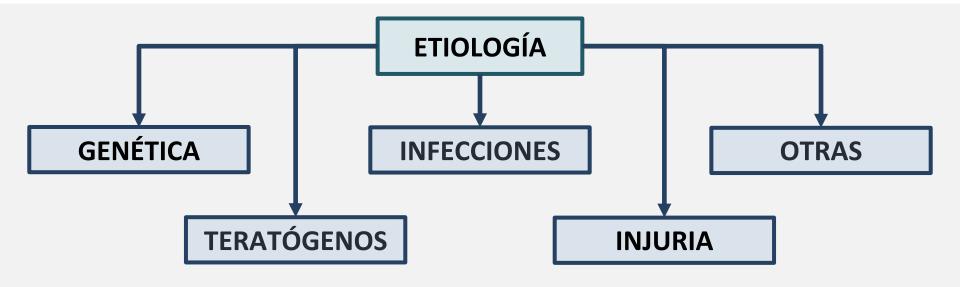
- Plataforma para migración neuronal hacia la superficie


Células neuronales: Migración

- Radial: Se posicionan de adentro hacia afuera (formando 6 capas)

 A nivel de corteza se organizan mediante conexiones locales (sinapsis)
- Tangencial: Formando tractos neuronales

PROLIFERACIÓN NEURONAL



Alcaide Martin, Andrea, Mayeri, Steffen. Local Thyroide Hormone Action in Brain Development Int J Mol Sci 2023, 12352.

ALTERACIONES

GENES INVOLUCRADOS TAMBIÉN PARTICIPAN EN EL DESARROLLO DE LOS OJOS, ENCÉFALO, CARA Y SISTEMA ESQUELÉTICO

FENOTIPO DEPENDE DE ALTERACIÓN GENÉTICA Y TERPORALIDAD DEL PRIMER "INSULTO"

Aneuploidía: Número anormal de cromosomas

- Humanos: 46 cromosomas (23 pares de cromosomas homólogos)

Variación estructural: Desde 50 pb hasta una porción del cromosoma

- CNV: Pérdida o ganancia de DNA (genes)

- Reordenamientos: Sin pérdida/ganancia de material genético Puede existir pérdida de la función

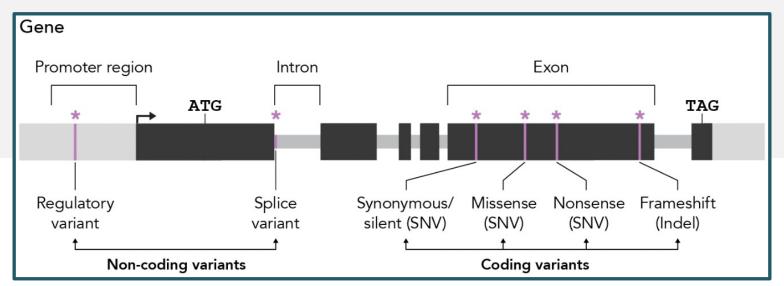
	CNV (no balanceado)	Reordenamiento (balanceado)
Intracromosomal	Deleciones / Duplicaciones	Inversiones
Intercromosomal	Translocación no balanceada	Translocación balanceada

CERPO

GENERALIDADES

Variantes pequeñas:

- Indel: Inserción o deleción entre 1-50 pares de bases
- SNV: Sustituciones que afectan a sólo una base nitrogenada


Codificantes: Dentro de secuencia codificante (exones)

No codificantes: Fuera de los exones

Variantes regulatorias: En promotores y potenciadores

Afectan expresión de un gen

Variantes splicing: En intrones (afectan el splicing)

TÉCNICAS DE EVALUACIÓN: CITOGENÉTICA TRADICIONAL

Técnica: Utiliza microscopía para evaluar variaciones genéticas

- Requerimiento: Células en metafase (cromosomas condensados)
- Motivo: Permite visualización óptima de los cromosomas

Cariotipo: Visualiza todos los cromosomas (estructura y número)

- Utilidad: Aneuploidías

Variantes estructurales visibles por microscopía

FISH: Observa regiones de cromosomas

- Diseña una muestra de secuencia de ácidos nucleicos para una región específica
- Se marca con agente luminiscente (DAPI)
- Utilidad: Aneuploidías

Reordenamientos (no necesariamente grandes)

VENTAJA: TRANSLOCACIÓN BALANCEADA

TÉCNICAS DE EVALUACIÓN: MICROARRAY

Microarray: Portaobjetos de vidrio que tiene miles de sitios microscópicos de DNA

- Zoom: Muestras de DNA adheridas a portaobjetos (cada una corresponde a una región particular del cromosoma)

Técnica: Obtención de la muestra (sangra/placenta/LA)

- Aislamiento del DNA en la células: Fragmentación y marcado con fluorescencia
- Llevado al microarray: Fragmentos se unirán a segmentos complementarios
- Fluorescencia: Directamente proporcional al DNA que se une en cada sitio
- Medición de fluorescencia: Determina niveles de DNA unidos

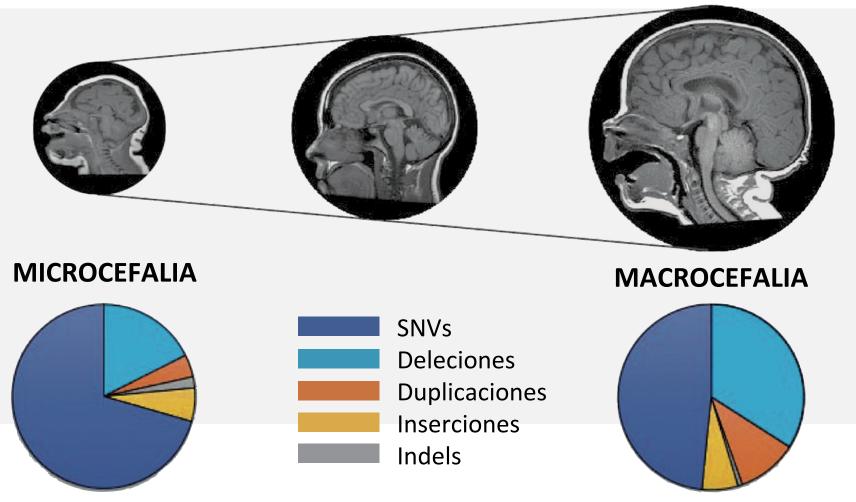
Utilidad: Variaciones estructurales (CNV + Duplicaciones)

GENÉTICATÉCNICAS DE EVALUACIÓN

Microarray cromosomal (CMA): Detecta anomalías de cromosomas que están bajo la resolución de la citogenética (útil en variaciones estructurales)

Array de genotipificación: Identifica SNPs (pruebas directo al consumidor)

- Busca regiones del genoma donde se sabe que hay una variación
- Bandas de DNA específicas para alelos conocidos


Secuenciación: Proceso de determinación del orden de los nucleótidos del DNA

- Gen único
- Panel de genes
- Exoma (región codificante de todos sus genes)
- Genoma completo (no utilizado en contexto clínico por costo)

VENTAJA: SNV + INDELS

CERPO

RELACIÓN CON PROLIFERACIÓN NEURONAL

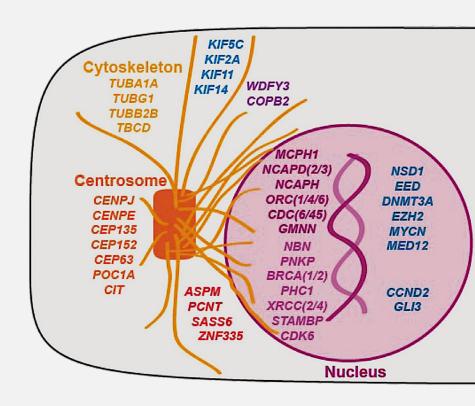
Pirozzi F, Nelson B, Mirzaa G. From microcephaly to megalencephaly: determinants of brain size. Dialogues Clin Neurosci. 2018 Dec;20(4):267-282.

RELACIÓN CON PROLIFERACIÓN NEURONAL

Defectos del ciclo celular y centrosoma

- Centrosoma

- Citoesqueleto

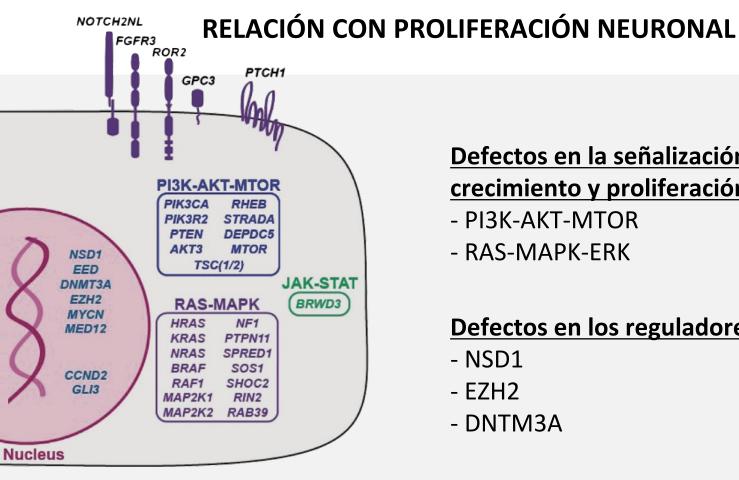

- Huso mitótico

- Kinesina

- Cinetocoro

Defectos de respuesta al daño del DNA

- Etapas posteriores (no en neuroblasto)
- Inducción de apoptosis
- Defectos de la diferenciación



Microcephaly

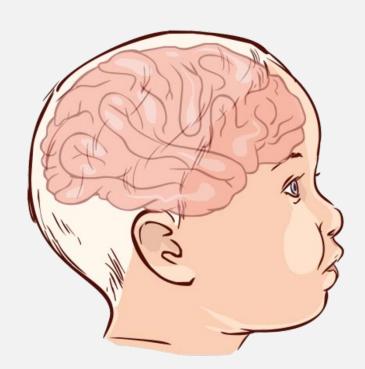
Structural

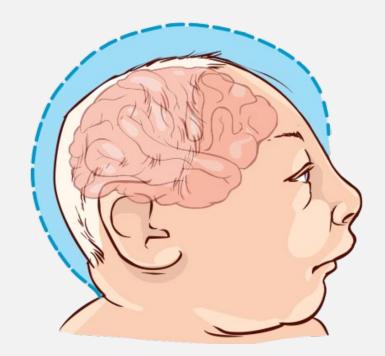
Pirozzi F, Nelson B, Mirzaa G. From microcephaly to megalencephaly: determinants of brain size. Dialogues Clin Neurosci. 2018 Dec;20(4):267-282.

Defectos en la señalización de crecimiento y proliferación neuronal

- PI3K-AKT-MTOR
- RAS-MAPK-ERK

<u>Defectos en los reguladores epigenéticos</u>


- **NSD1**
- EZH2
- DNTM3A


Megalencephaly

Signaling

Pirozzi F, Nelson B, Mirzaa G. From microcephaly to megalencephaly: determinants of brain size. Dialogues Clin Neurosci. 2018 Dec;20(4):267-282.

MICROCEFALIA DEFINICIÓN & EPIDEMIOLOGÍA

Postnatal: Circunferencia cefálica < 2 DE (< p3)

- Definición amplia (incluye individuos sanos)
- Categoriza al 2% de la población sana como microcefalia

Prenatal: Circunferencia cefálica < 3 DE (< p0,1)

- < 3 DE: Punto de corte sin falsos (–)</p>

- < 4 DE: Punto de corte sin falsos (+)</p>

A ↓ TAMAÑO (CC) HAY ↑ RIESGO DE RETRASO INTELECTUAL

Epidemiología: Varía según criterios diagnósticos y población estudiada

- Europa: 1,53/10.000 RN vivos

- EEUU: 6/10.000 RN vivos

Nawathe, A., Doherty, J., & Pandya, P. Fetal microcephaly. BMJ, 361, k2232.

Gelber, Shari E et al. Prenatal screening for microcephaly: an update after three decades. JOPM vol. 45,2 (2017): 167-170

¿POR QUÉ ES DIFÍCIL EL DIAGNÓSTICO?

RENDIMIENTO DE LAS CURVAS DE CRECIMIENTO ES CONSIDERADO BAJO

- 1. Ausencia de estudios cuyo objetivo sea optimizar las estrategias predictivas para el diagnóstico prenatal de microcefalia
- 2. Sobreestimación del Z-score prenatal en comparación al postnatal
- 3. Diferencias metodológicas entre las mediciones de CC pre y postnatal
- 4. Metodología inconsistente de la medición de CC

Criterio	VPP
CC <u><</u> -3 DE	57,1%
CC ≤ -3 DE + EPF < p3	66,7%
CC ≤ -3 DE + Anomalías	70%

Criterio	VPP
CC ≤ -3 DE + MC familiar	100%
CC ≤ -4 DE	100%

Leibocitz Zvi, Lerman-Sagie Talli. Diagnostic approach to fetal microcephaly. Eur Jour Paediatr Neurol 2018 Nov;22(6): 935-943.

MICROCEFALIA ETIOLOGÍA

	Genética	Ambiental
Primaria	Microcefalia 1° autosómica recesiva	Malnutrición materna Hipoxia
Secundaria	Cromosómicos: Trisomías 13/18/21 Triploidía Deleción 5p (cri du chat) Síndromes: Meckel-Gruber Smith-Lemli-Opitz Bloom Nijmegen De Lange	Restricción del crecimiento fetal Infecciones: Toxoplasmosis Citomegalovirus Zika Teratógenos: OH Hidantoína Errores innatos del metabolismo: PKU

↓ N° DE CÉLULAS EN MATRIZ GERMINAL

DEFECTOS EN CICLO CELULAR

DEFECTOS EN RESPUESTA AL DAÑO DE DNA

EVALUACIÓN ECOGRÁFICA

Circunferencia cefálica ≤ 3 DE

- Temporalidad: Generalmente entre 27-33 semanas
- Dificultad para visualizar SNC: Ventana acústica deficiente (suturas estrechas)

Hallazgos relacionados a cerebro pequeño

- Frente retraída: Hipoplasia del lóbulo frontal Desproporción lóbulos frontales-cara
- Orejas de gran tamaño (aparente)
- ↑ Espacio subaracnoideo

Anomalías asociadas:

- Migración neuronal: Lisencefalia / Heterotopia ventricular
 Disgenesia del cuerpo calloso
- Otras del SNC: Holoprosencefalia / Hidrocefalia Secuelas de infección

Leibocitz Zvi, Lerman-Sagie Talli. Diagnostic approach to fetal microcephaly. Eur Jour Paediatr Neurol 2018 Nov;22(6): 935-943.

CAUSAS GENÉTICAS

FRECUENTES (≥ 1/10.000)	Monosomía 1p36 (deleción)	2/10.000	
	Síndrome de Aicardi-Goutiéres	1-5/10.000	
	Síndrome de Williams-Beuren	1/7.500 — 1/18.000	
	Síndrome de Cornelia de Lange	1/10.000 – 1/30.000	
INFRECUENTES (1/10.000 A 1/50.000)	Síndrome de Angelman	1/12.000 – 1/20.000	
	Síndrome de cri-du-chat (deleción 5p15.2)	1/20.000 – 1/50.000	
	Síndrome de Smith-Lemli-Opitz	1/20.000 – 1/60.000	
	Síndrome de Bloom	1/48.000	
	Síndrome de Wolf-Hirschhorn (deleción 4p)	1/50.000	
RARAS (< 1/50.000)	Síndrome de Mowat-Wilson	1/50.000 — 1/70.000	
	Síndrome de Miller-Dieker (deleción 17p13.3)	1/100.000	
	Síndrome de Rubinstein-Taybi	1/100.000 — 1/125.000	
	Síndrome de Seckel	< 1/100.000	
	Síndrome de Cockayne	2-3/1.000.000	

DELECIÓN 1p36

Etiología:

- Deleción terminal (50%)
- Deleción intermedia (30%)
- Reordenamientos complejos (12%)
- Translocación no balanceada (7%)

Características

- Cardiopatía (50-75%): Ebstein
- Hipoacusia sensorio-neural
- Esqueléticas: Microcefalia / Braquidactilia
- Genitourinarios: 25%

Fascie

- Cejas derechas
- Hipoplasia de cara media
- Filtro amplio
- Orejas de rotación posterior Fontanelas amplias
- Ojos profundos
- Puente nasal ancho
- Mentón puntiagudo

HALLAZGOS PRENATALES **NO SON ESPECÍFICOS**

0,5-1,2% de discapacidad intelectual sindrómica

Guterman, et al. Prenatal findings in 1p36 deletion síndrome: New cases and a literatura review. Prenatal Diagnosis 2019; 1-12.

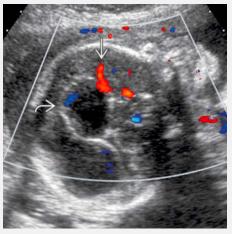
SÍNDROME DE AICARDI

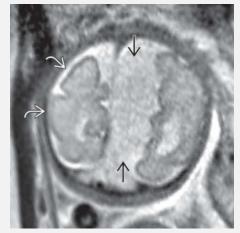
Etiología: Desconocida (sin gen candidato)

- Cariotipo XX / XXY (anomalías de metilación?)
- Mutación de novo: 100% (no se reproducen)

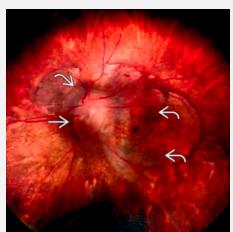
Triada

- Espasmos infantiles
- Agenesia de cuerpo calloso
- Lagunas corio-retinales (patognomónico)


Características


- SNC: Polimicrogiria
 Heterotopia periventricular/subcortical
 Displasia cerebelar
 Quiste/Papiloma del plexo coroideo
 Microftalmia / Coloboma
- Esquelético: Hemivértebras Escoliosis Costillas ausentes/malformadas


Byrne, Puchalski, Shaffer, Edwards, Jha, Hogan. Diagnostic Imaging Obstetrics, 4th Edition.



SÍNDROME DE WILLIAMS-BEUREN

Etiología:

- Microdeleción en cromosoma 7
- Banda 7q11.23 (1,55-1,84 Mb)
- Comprende 26-28 genes
- Hallazgos depende de genes involucrados

Características

- RCF
- Cardiopatía (80%): VSD / CoAo /ArAo derecho Fallot
- Gastrointestinal: Atresia duodenal
- Genitourinarios: Displasia renal multiquística

Ruibin Huang, et al. Prenatal diagnosis of Williams-Beuren syndrome by ultrasound and chromosomal microarray análisis. Molecular Cytogenetics 2022; 15:27.

Fascie

- Nariz pequeña
- Macrostomía
- Mejillas prominentes

- Puente nasal corto
- Labios gruesos
- Mentón pequeño

HALLAZGOS PRENATALES NO SON ESPECÍFICOS

Serie de casos diagnóstico prenatal = 10 (02/2023)

SÍNDROME DE CORNELIA DE LANGE

Etiología: Variante patogénica en cohesina (1/5)

- Cohesina: Regula cohesión de cromátidas hermanas durante la fase S

- Genes: NIPBL / SMC1A / SMC3 / HDAC8 / RAD21

- Etiología: Esporádica (99%)

Fascie

- Cejas fusionadas y finas

Pestañas largas

- Narinas antevertidas

- Labios delgados

- Ojos hacia abajo

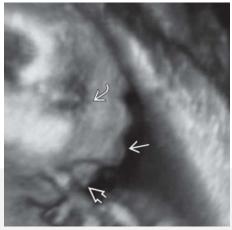
- Ptosis

- Filtro sin relieve

- Micrognatia

Características

Esqueléticas: Huesos largos cortos
 Reducción EE y monodactilia


- Cardiopatía (25%): Estenosis pulmonar / VSD

- Gastrointestinal: Malrotación / Duplicación Vólvulo

- Hipertricosis

Byrne, Puchalski, Shaffer, Edwards, Jha, Hogan. Diagnostic Imaging Obstetrics, 4th Edition.

DEFINICIÓN & EPIDEMIOLOGÍA

Definiciones:

- Macrocefalia: CC > 2 DE

Megalencefalia: ↑ Parénquima cerebral (excluyendo causas secundarias)

Prenatal: No existe definición precisa

- Al igual que en microcefalia se sugiere utilizar > 3 DE

Postnatal: Circunferencia cefálica > 2 DE (≥ p97)

RN masculino: 39 cmRN femenino: 38 cm

Epidemiología: Varía según criterios diagnóstico (1/1.146-1/50.000)

MEGALENCEFALIA

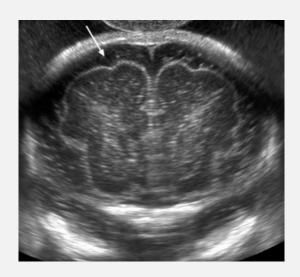
ETIOLOGÍA

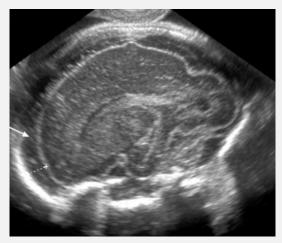
	Sobrecrecimiento (+)	Sobrecrecimiento (-)
Genética	Síndromes: de Sotos Simpson-Golabi-Behmel X frágil Weaver M-CMTC Bannayan-Ruvalcaba-Riley	Megalencefalia familiar (50%) Síndromes: Oppitz-Kaveggia Cefalopolisindactilia Acrocalloso de Forlin de hamartoma PTEN

Metabólica	Secundarias
Leucodistrofias - Enfermedad de Alexander / Canavan - Leucoencefalopatía megalencefálica Desórdenes de almacenamiento lisosomal - Enfermedad de Tay-Sachs - Mucopolisacaridosis - Galgliosidosis Desórdenes de ácidos orgánicos - Aciduria glutárica	↑ Espacio subaracnoideo: Hidrocefalia Hidranencefalia Sangrado: Hemorragia / Malformación AV Displasias esqueléticas ↑ Presión intracraneal: Infección / Inflamación Tumores: Quiste/Tumor intracraneal

EVALUACIÓN ECOGRÁFICA

Circunferencia cefálica > 3 DE


- Temporalidad: Generalmente en 3° trimestre


Hallazgos relacionados a cerebro grande

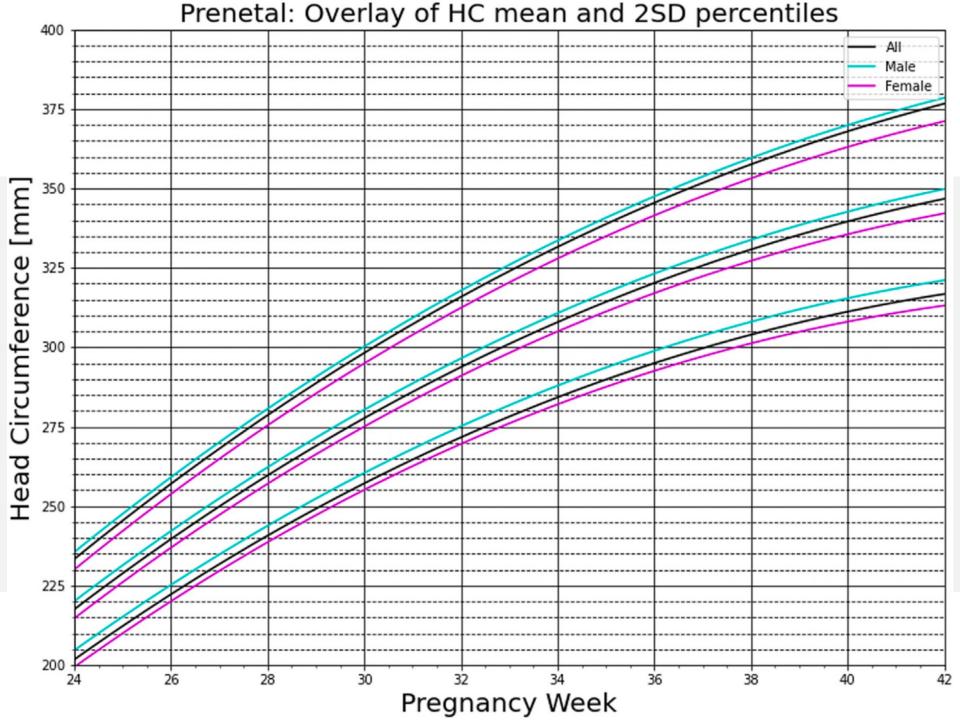
- Frente abombada: Prominencia frontal (plano sagital)
- ↑ Líquido extra-axial

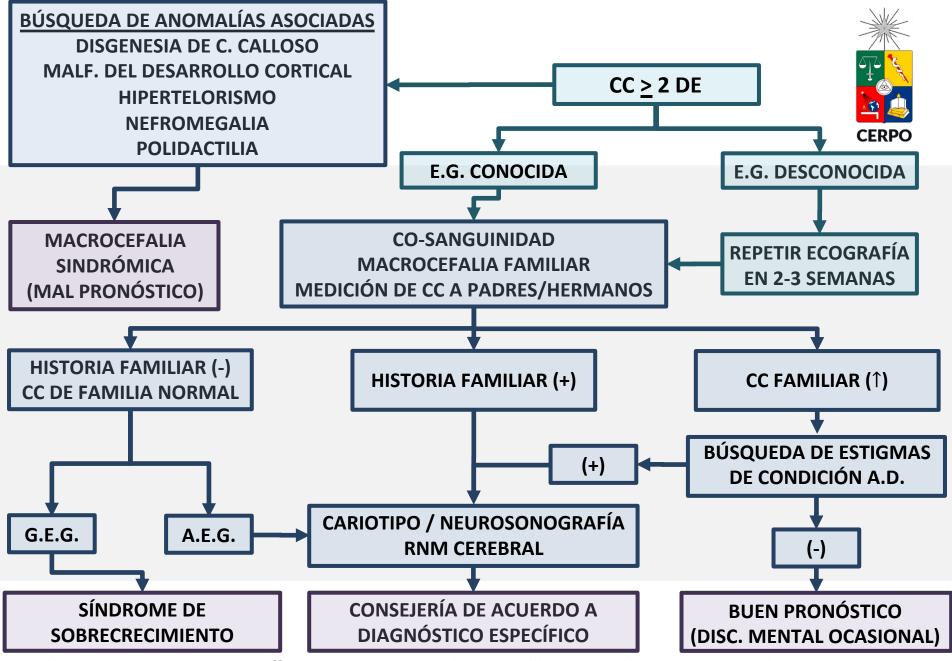
Anomalías asociadas

- Migración neuronal: Paquigiria + Polimicrogiria
 Heterotopia periventricular
 Disgenesia del cuerpo calloso
- Otras del SNC: Ventriculomegalia Disgenesia cerebelosa o mesencefálica
- Esqueléticas: Polidactilia + Vasculares (en EE)

Prenatal gender-customized head circumference nomograms result in reclassification of microcephaly and macrocephaly

Rivka Sukenik-Halevy, MD; Ella Golbary Kinory, MS; Tamar Laron Kenet, MD; Dana Brabbing-Goldstein, MD; Yinon Gilboa, MD; Lina Basel-Salmon, MD, PhD; Sharon Perlman, MD


CC postnatal (p5) difiere en hombres y mujeres (no así nomograma prenatal)


Estudio retrospectivo (2012-2020): Cohorte de 11.404 pacientes. Análisis de acuerdo a clasificación en curva clásica y curva por sexo. Seguimiento de pacientes que diferían en clasificación.

Resultados: Aplicar curva customizada resultó en:

- Feto masculino: ↓ N° de fetos > 2 DE
- Feto femenino: ↓ N° de fetos < 2 DE
- Fetos "discordantes" en clasificación: Sin diferencias en pronóstico ni pruebas neurocognitivas.

Prenatal gender-customized head circumference nomograms result in reclassification of microcephaly and macrocephaly. Sukenik-Halevy-Rivka. AJOG Glob Rep. 2023 Jan 29;3(1):100171.

Malinger G, Lev D, Ben-Sira L, Hoffmann C, Herrera M, Viñals F, Vinkler H, Ginath S, Biran-Gol Y, Kidron D, Lerman-Sagie T. Can syndromic macrocephaly be diagnosed in utero? Ultrasound Obstet Gynecol. 2011 Jan;37(1):72-81.

CERPO

CAUSAS GENÉTICAS

FRECUENTES (≥ 1/10.000)	Síndrome de X frágil	1/4.000 – 1/8.000
INFRECUENTES	Síndrome de Sotos	1/10.000 — 1/40.000
(1/10.000 A	Síndrome de Gorlin	1/31.000
1/200.000)	Síndrome de hamartoma PTEN	1/200.000
	Síndrome de cefalopolisindactilia	1-9/1.000.000
	Síndrome de M-CMTC	< 300 casos
RARAS (< 1/50.000)	Síndrome de Simpson-Golabi-Behmel	< 250 casos
	Síndrome de Weaber	+- 50 casos
	Síndrome acrocalloso	< 50 casos
	Bannayan-Ruvalcaba-Riley	Extremadamente raro
	Oppitz-Kaveggia	Extremadamente raro

SÍNDROME DE X FRÁGIL: GENÉTICA

Genética: Repeticiones inestables

- Entre SNV y variación estructural
- Regiones con series de segmentos cortos que tienen repeticiones de un pequeño número de nucleótidos
- Generalmente benignas (pero susceptibles a errores en replicación y reparación)

Replicación: DNA polimerasa puede...

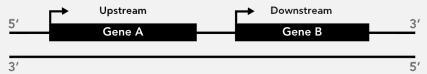
- Aumentar: Expansión de los tripletes (mayoría de los casos)

Riesgos: Benigno – Intermedio – Premutación – Mutación

A mayor longitud ↑ severidad de síntomas y/o ↓ edad de presentación

- Disminuir: Disminución de los tripletes

ANTICIPACIÓN


La enfermedad cada vez es más precoz

SÍNDROME DE X FRÁGIL

Etiología

- Variante de pérdida de función del gen FMR1
- Localización: Xq27.3
- Causa: Repetición inestable del triplete CGG en la región 5' del gen (99%)

- Premutación: 50-200 repeticiones

- Mutación: > 200 repeticiones

Características

- Causa más frecuente de discapacidad intelectual

Fascie

- Estrabismo
- Hiperlaxitud
- Hipotonía
- Frente amplia
- Hipoplasia fronto-nasal
- Paladar arqueado
- Manos con exceso de piel
- Orejas grandes

Saul RA, Tarleton JC. FMR1-related disorders. GeneReviews. www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=gene&part=fragilex

IMPORTANCIA: SCREENING

MACROCEFALIA

SÍNDROME DE X FRÁGIL: SCREENING

Portador

- Mujeres con antecedente familiar de síndrome de X frágil o discapacidad intelectual sugerente
- Insuficiencia ovárica prematura o FSH < 40 años (premutación)
- Consejería genética posterior

- Madre/Padre portador de premutación o mutación

Portador (agrega los siguientes criterios):

- Temblor de intención o ataxia de aparición tardía (especialmente con historia familiar de trastornos del movimiento)

American College of Obstetricians and Gynecologists. ACOG Committee Opinion No. 691: Carrier screening for genetic conditions. Obstet Gynecol 2017; 129:e41.

Sherman S, Pletcher BA, Driscoll DA. Fragile X syndrome: Diagnostic and carrier testing. Genet Med 2005; 7:584

MACROCEFALIA SÍNDROME DE SOTOS

Etiología: Haploinsuficiencia del receptor NSD1

- NSD1: Metiltransferasa de histonas

- Efecto: Remodela cromatina

- Causa: Deleción / Mutación puntual

Fascie

- Frente abombada

- Fisura palpebral

- Paladar arqueado

- Hipertelorismo

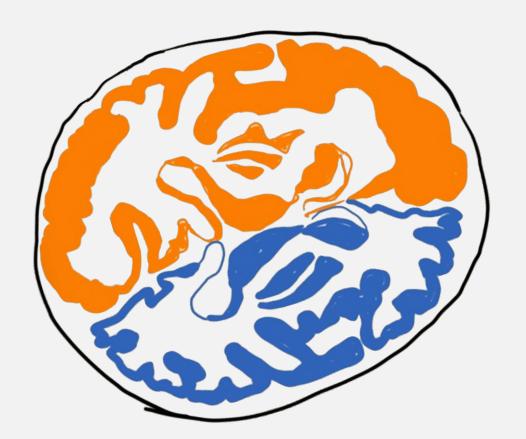
- Orejas grandes

- Mentón agudo

Características

- Síndrome de sobrecrecimiento
- SNC: Ventriculomegalia
 Anormalidades del cuerpo calloso
- Cardiopatía: CIA
- Urológico: Riñón hipoplásico / Hidronefrosis
- Escoliosis

MACROCEFALIA


Característica	Síndrome acrocalloso	Síndrome de cefalopolisindactilia
Gen	KIF7 (cromosoma 15)	GL13 (cromosoma 7)
Ojos	Hipertelorismo	Hipertelorismo
Manos/Pies	Polidactilia / Sindactilia	Polidactilia / Sindactilia
SNC	Macrocefalia Agenesia/Disgenesia de CC Quiste intracerebral	Macrocefalia

García-Rodríguez, Raquel, et al. Prenatal diagnosis of Greig Cephalopolysyndactyly Syndrome. When to suspect it. Fetal Diagn Ther 2011;30:234–238

4

HEMIMEGALENCEFALIA

HEMIMEGALENCEFALIA

EGALENCE FALIA GENERALIDADES

Definición: 1 Volumen hamartomatoso de un hemisferio cerebral

- Anormalidad de la proliferación y de la migración neuronal

Etiología:

- Esporádica: Mayoría de los casos

- Genética: Síndromes neurocutáneos

Pronóstico: Depende de grado de anormalidad

- Epilepsia
- Retraso del DSM
- Hemiparesia contralateral

Timor-Tritsch, Monteagudo, Pilu, Malinger. Ultrasonography of the Prenatal Brain. Third Edition.

HEMIMEGALENCEFALIA

Ventriculomegalia

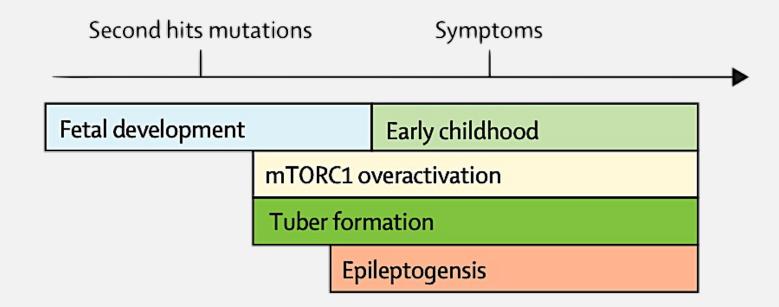
ECOGRAFÍA Engrosamiento de bóveda **HEMIMEGALENCEFALIA** ATROFIA HEMICEREBRAL craneana ↓ Corteza (sustancia Ventriculomegalia gris) **Anomalías** venosas Calcificaciones de sustancia blanca ↓ Volumen Alteración sustancia Desplazamiento blanca

de patrón de sulcación

contralateral de FIH posterior

HEMIMEGALENCEFALIA

ECOGRAFÍA



Hemimegalencephaly: prenatal diagnosis and outcome. Fetal Diagn Ther 2011;30(3):234-8.

SÍNDROMES NEUROCUTÁNEOS: ESCLEROSIS TUBEROSA

ESCLEROSIS TUBEROSA

CERPO

GENERALIDADES

Definición: Enfermedad neuroectodérmica multisistémica

- Proliferación anormal de neuronas y células de la glía en hamartomas o tumores
- Se asocia a anomalías de la migración y diferenciación neuronal

Epidemiología: 1-2/10.000 RN vivos

- Detección prenatal: < 50%

- Hallazgo más sugerente: Rabdomioma cardíaco

Triada clásica:

- Retraso en desarrollo intelectual
- Epilepsia
- Angiofibromas faciales

Timor-Tritsch, Monteagudo, Pilu, Malinger. Ultrasonography of the Prenatal Brain. Third Edition.

ESCLEROSIS TUBEROSA

CERPO

GENÉTICA

Enfermedad autosómica dominante: Penetrancia y expresividad variable

- Mutación de novo: 80%

Gen supresor de tumores: Complejo hamartina-tuberina

- TSC1 (25%): Cromosoma 9q

- TSC2 (75%): Cromosoma 16p

Proteínas: Codifican proteínas que "suprimen tumores"

- Inhiben cascada mTOR
- Permiten desarrollo normal del cerebro
- Permiten retirada de cardiomiocitos del ciclo celular

Timor-Tritsch, Monteagudo, Pilu, Malinger. Ultrasonography of the Prenatal Brain. Third Edition.

ESCLEROSIS TUBEROSA

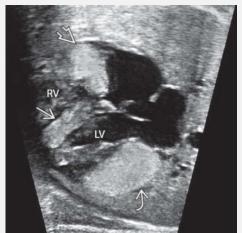
SNC

- Hamartoma subependimario: Nódulo ecogénico pequeño (irregularidad en pared ventricular)
- Túber: Nódulo parenquimatoso ecogénico de mayor tamaño (áreas de corteza que perdieron su estructura laminar normal)
- Astrocitoma de células gigantes subependimario (SEGA): Lesión de mayor tamaño cerca del agujero de Monro (raro en periodo prenatal)

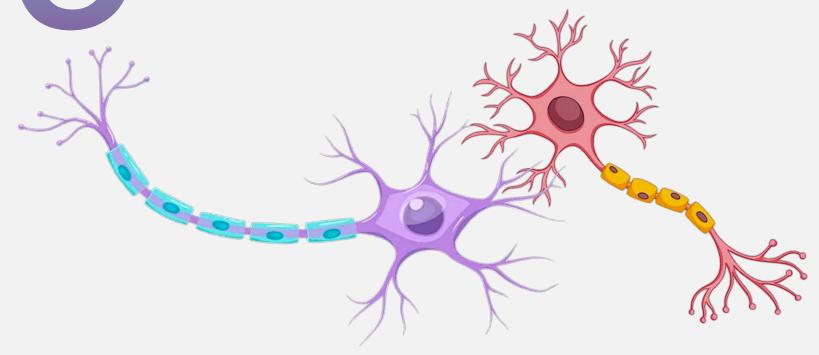
Cardíaco: Rabdomioma

 Lesión hiperecogénica, bien definida, única o múltiple, que puede aparentar un engrosamiento focal si es pequeño

Renal:


- Quiste renal: 50%
- Angiomiolipoma: Muy raro en prenatal





CONCLUSIONES

CONCLUSIONES

Microcefalia:

- Se origina en defectos del ciclo celular, centrosoma y respuesta al daño del DNA
- Rendimiento de las curvas de crecimiento es bajo
- A menor CC mayor es el riesgo de alteraciones del neurodesarrollo
- Los hallazgos ultrasonográficos prenatales no son específicos

Macrocefalia:

- Se origina en defectos de la señalización de crecimiento y proliferación neuronal, así como en regulación epigenética
- Etiología más frecuente es el síndrome de X frágil

Hemimegalencefalia:

- Entidad muy poco frecuente
- Búsqueda activa de síndromes neurocutáneos

CONCLUSIONES

			CERPO
Síndrome	Herencia	Genética	Clínica
Deleción 1p36	Mutación de novo	Deleción terminal (50%), intermedia (30%), reordenamientos complejos (12%), translocación no balanceada (7%)	Cardiopatía (50-75%)HipoacusiaMicrocefalia / BraquidactiliaGenitourinarios: 25%
Síndrome de Aicardi	Desconocido	Obs. anomalías de metilación en cromosoma X	Espasmos infantilesAgenesia de cuerpo callosoLagunas corio-retinales (patognomónico)
Síndrome de Williams-Beuren	Mutación de novo (AD)	Microdeleción en cromosoma 7	RCFCardiopatía (80%):Gastrointestinal: Atresia duodenalGenitourinarios: Displasia renal multiquística
Síndrome de Cornelia de Lange	Mutación de novo (99%)	Variante patogénica en cohesina (1/5) Genes: NIPBL / SMC1A / SMC3 / HDAC8 / RAD21	 - Huesos largos cortos / Reducción EE - Cardiopatía (25%) - Gastrointestinal: Malrotación / Duplicación - Hipertricosis
Síndrome de X frágil	Ligado al X	Repetición inestable del triplete CGG en la región 5' del gen FMR1 (99%)	Discapacidad intelectualEstrabismo - Hipoplasia fronto-nasal
Síndrome de Sotos	Autosómico dominante	Haploinsuficiencia del receptor NSD1 (gen en cromosoma 5)	 Síndrome de sobrecrecimiento SNC: Ventriculomegalia / Disgenesia CC Cardiopatía (CIA) / Escoliosis Urológico: Riñón hipoplásico / Hidronefrosis
Esclerosis tuberosa	Autosómico dominante	- Gen TSC1 (25%): Cromosoma 9q - Gen TSC2 (75%): Cromosoma 16p	- SNC: Hamartoma / Túber / Astrocitoma - Rabdomioma cardíaco